Codebase list ntl / upstream/11.0.0 doc / ZZ_pX.cpp.html
upstream/11.0.0

Tree @upstream/11.0.0 (Download .tar.gz)

ZZ_pX.cpp.html @upstream/11.0.0raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<title>~/ntl-10.5.0test/doc/ZZ_pX.cpp.html</title>
<meta name="Generator" content="Vim/8.0">
<meta name="plugin-version" content="vim7.4_v2">
<meta name="syntax" content="cpp">
<meta name="settings" content="use_css,pre_wrap,no_foldcolumn,expand_tabs,prevent_copy=">
<meta name="colorscheme" content="macvim">
<style type="text/css">
<!--
pre { white-space: pre-wrap; font-family: monospace; color: #000000; background-color: #ffffff; }
body { font-family: monospace; color: #000000; background-color: #ffffff; }
* { font-size: 1em; }
.String { color: #4a708b; }
.PreProc { color: #1874cd; }
.Statement { color: #b03060; font-weight: bold; }
.Comment { color: #0000ee; font-style: italic; }
.Type { color: #008b00; font-weight: bold; }
-->
</style>

<script type='text/javascript'>
<!--

-->
</script>
</head>
<body>
<pre id='vimCodeElement'>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">MODULE: ZZ_pX</span>

<span class="Comment">SUMMARY:</span>

<span class="Comment">The class ZZ_pX implements polynomial arithmetic modulo p.</span>

<span class="Comment">Polynomial arithmetic is implemented using the FFT, combined with the</span>
<span class="Comment">Chinese Remainder Theorem.  A more detailed description of the</span>
<span class="Comment">techniques used here can be found in [Shoup, J. Symbolic</span>
<span class="Comment">Comp. 20:363-397, 1995].</span>

<span class="Comment">Small degree polynomials are multiplied either with classical </span>
<span class="Comment">or Karatsuba algorithms.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="PreProc">#include </span><span class="String">&lt;NTL/ZZ_p.h&gt;</span>
<span class="PreProc">#include </span><span class="String">&lt;NTL/vec_ZZ_p.h&gt;</span>

<span class="Type">class</span> ZZ_pX {
<span class="Statement">public</span>:

   ZZ_pX(); <span class="Comment">// initialize to 0</span>

   ZZ_pX(<span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// copy constructor</span>
   <span class="Type">explicit</span> ZZ_pX(<span class="Type">const</span> ZZ_p&amp; a); <span class="Comment">// promotion </span>
   <span class="Type">explicit</span> ZZ_pX(<span class="Type">long</span> a); <span class="Comment">// promotion </span>

   ZZ_pX&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// assignment</span>
   ZZ_pX&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_p&amp; a); <span class="Comment">// assignment</span>
   ZZ_pX&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> <span class="Type">long</span> a); <span class="Comment">// assignment</span>

   ~ZZ_pX(); <span class="Comment">// destructor</span>

   ZZ_pX(ZZ_pX&amp;&amp; a);
   <span class="Comment">// move constructor (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>

<span class="PreProc">#ifndef NTL_DISABLE_MOVE_ASSIGN</span>
   ZZ_pX&amp; <span class="Statement">operator</span>=(ZZ_pX&amp;&amp; a);
   <span class="Comment">// move assignment (C++11 only)</span>
   <span class="Comment">// declared noexcept unless NTL_EXCEPTIONS flag is set</span>
<span class="PreProc">#endif</span>

   ZZ_pX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">const</span> ZZ_p&amp; c);
   ZZ_pX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">long</span> c);
   <span class="Comment">// initialize to c*X^i, invoke as ZZ_pX(INIT_MONO, i, c)</span>

   ZZ_pX(INIT_MONO_TYPE, <span class="Type">long</span> i, <span class="Type">long</span> c);
   <span class="Comment">// initialize to X^i, invoke as ZZ_pX(INIT_MONO, i)</span>


   <span class="Comment">// typedefs to aid in generic programming</span>
   <span class="Type">typedef</span> zz_p coeff_type;
   <span class="Type">typedef</span> zz_pE residue_type;
   <span class="Type">typedef</span> zz_pXModulus modulus_type;
   <span class="Type">typedef</span> zz_pXMultiplier multiplier_type;
   <span class="Type">typedef</span> fftRep fft_type;


   <span class="Comment">// ...</span>


};





<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Accessing coefficients</span>

<span class="Comment">The degree of a polynomial f is obtained as deg(f),</span>
<span class="Comment">where the zero polynomial, by definition, has degree -1.</span>

<span class="Comment">A polynomial f is represented as a coefficient vector.</span>
<span class="Comment">Coefficients may be accesses in one of two ways.</span>

<span class="Comment">The safe, high-level method is to call the function</span>
<span class="Comment">coeff(f, i) to get the coefficient of X^i in the polynomial f,</span>
<span class="Comment">and to call the function SetCoeff(f, i, a) to set the coefficient</span>
<span class="Comment">of X^i in f to the scalar a.</span>

<span class="Comment">One can also access the coefficients more directly via a lower level </span>
<span class="Comment">interface.  The coefficient of X^i in f may be accessed using </span>
<span class="Comment">subscript notation f[i].  In addition, one may write f.SetLength(n)</span>
<span class="Comment">to set the length of the underlying coefficient vector to n,</span>
<span class="Comment">and f.SetMaxLength(n) to allocate space for n coefficients,</span>
<span class="Comment">without changing the coefficient vector itself.</span>

<span class="Comment">After setting coefficients using this low-level interface,</span>
<span class="Comment">one must ensure that leading zeros in the coefficient vector</span>
<span class="Comment">are stripped afterwards by calling the function f.normalize().</span>

<span class="Comment">NOTE: the coefficient vector of f may also be accessed directly</span>
<span class="Comment">as f.rep; however, this is not recommended. Also, for a properly</span>
<span class="Comment">normalized polynomial f, we have f.rep.length() == deg(f)+1,</span>
<span class="Comment">and deg(f) &gt;= 0  =&gt;  f.rep[deg(f)] != 0.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>



<span class="Type">long</span> deg(<span class="Type">const</span> ZZ_pX&amp; a);  <span class="Comment">// return deg(a); deg(0) == -1.</span>

<span class="Type">const</span> ZZ_p&amp; coeff(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> i);
<span class="Comment">// returns the coefficient of X^i, or zero if i not in range</span>

<span class="Type">const</span> ZZ_p&amp; LeadCoeff(<span class="Type">const</span> ZZ_pX&amp; a);
<span class="Comment">// returns leading term of a, or zero if a == 0</span>

<span class="Type">const</span> ZZ_p&amp; ConstTerm(<span class="Type">const</span> ZZ_pX&amp; a);
<span class="Comment">// returns constant term of a, or zero if a == 0</span>

<span class="Type">void</span> SetCoeff(ZZ_pX&amp; x, <span class="Type">long</span> i, <span class="Type">const</span> ZZ_p&amp; a);
<span class="Type">void</span> SetCoeff(ZZ_pX&amp; x, <span class="Type">long</span> i, <span class="Type">long</span> a);
<span class="Comment">// makes coefficient of X^i equal to a; error is raised if i &lt; 0</span>

<span class="Type">void</span> SetCoeff(ZZ_pX&amp; x, <span class="Type">long</span> i);
<span class="Comment">// makes coefficient of X^i equal to 1;  error is raised if i &lt; 0</span>

<span class="Type">void</span> SetX(ZZ_pX&amp; x); <span class="Comment">// x is set to the monomial X</span>

<span class="Type">long</span> IsX(<span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// test if x = X</span>




ZZ_p&amp; ZZ_pX::<span class="Statement">operator</span>[](<span class="Type">long</span> i);
<span class="Type">const</span> ZZ_p&amp; ZZ_pX::<span class="Statement">operator</span>[](<span class="Type">long</span> i) <span class="Type">const</span>;
<span class="Comment">// indexing operators: f[i] is the coefficient of X^i ---</span>
<span class="Comment">// i should satsify i &gt;= 0 and i &lt;= deg(f).</span>
<span class="Comment">// No range checking (unless NTL_RANGE_CHECK is defined).</span>


<span class="Type">void</span> ZZ_pX::SetLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetLength(n) sets the length of the inderlying coefficient</span>
<span class="Comment">// vector to n --- after this call, indexing f[i] for i = 0..n-1</span>
<span class="Comment">// is valid.</span>

<span class="Type">void</span> ZZ_pX::normalize();
<span class="Comment">// f.normalize() strips leading zeros from coefficient vector of f</span>

<span class="Type">void</span> ZZ_pX::SetMaxLength(<span class="Type">long</span> n);
<span class="Comment">// f.SetMaxLength(n) pre-allocate spaces for n coefficients.  The</span>
<span class="Comment">// polynomial that f represents is unchanged.</span>





<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Comparison</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">long</span> <span class="Statement">operator</span>==(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Type">long</span> <span class="Statement">operator</span>!=(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);

<span class="Comment">// PROMOTIONS: operators ==, != promote {long, ZZ_p} to ZZ_pX on (a, b).</span>

<span class="Type">long</span> IsZero(<span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// test for 0</span>
<span class="Type">long</span> IsOne(<span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// test for 1</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                   Addition</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Comment">// operator notation:</span>

ZZ_pX <span class="Statement">operator</span>+(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
ZZ_pX <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);

ZZ_pX <span class="Statement">operator</span>-(<span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// unary -</span>

ZZ_pX&amp; <span class="Statement">operator</span>+=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a);
ZZ_pX&amp; <span class="Statement">operator</span>+=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_p&amp; a);
ZZ_pX&amp; <span class="Statement">operator</span>+=(ZZ_pX&amp; x, <span class="Type">long</span> a);

ZZ_pX&amp; <span class="Statement">operator</span>-=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a);
ZZ_pX&amp; <span class="Statement">operator</span>-=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_p&amp; a);
ZZ_pX&amp; <span class="Statement">operator</span>-=(ZZ_pX&amp; x, <span class="Type">long</span> a);

ZZ_pX&amp; <span class="Statement">operator</span>++(ZZ_pX&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>++(ZZ_pX&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>

ZZ_pX&amp; <span class="Statement">operator</span>--(ZZ_pX&amp; x);  <span class="Comment">// prefix</span>
<span class="Type">void</span> <span class="Statement">operator</span>--(ZZ_pX&amp; x, <span class="Type">int</span>);  <span class="Comment">// postfix</span>

<span class="Comment">// procedural versions:</span>


<span class="Type">void</span> add(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b); <span class="Comment">// x = a + b</span>
<span class="Type">void</span> sub(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b); <span class="Comment">// x = a - b</span>
<span class="Type">void</span> negate(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// x = -a</span>


<span class="Comment">// PROMOTIONS: binary +, - and procedures add, sub promote</span>
<span class="Comment">// {long, ZZ_p} to ZZ_pX on (a, b).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Multiplication</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZ_pX <span class="Statement">operator</span>*(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);

ZZ_pX&amp; <span class="Statement">operator</span>*=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a);
ZZ_pX&amp; <span class="Statement">operator</span>*=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_p&amp; a);
ZZ_pX&amp; <span class="Statement">operator</span>*=(ZZ_pX&amp; x, <span class="Type">long</span> a);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> mul(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b); <span class="Comment">// x = a * b</span>

<span class="Type">void</span> sqr(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// x = a^2</span>
ZZ_pX sqr(<span class="Type">const</span> ZZ_pX&amp; a);

<span class="Comment">// PROMOTIONS: operator * and procedure mul promote {long, ZZ_p} to ZZ_pX</span>
<span class="Comment">// on (a, b).</span>

<span class="Type">void</span> power(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> e);  <span class="Comment">// x = a^e (e &gt;= 0)</span>
ZZ_pX power(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> e);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                               Shift Operations</span>

<span class="Comment">LeftShift by n means multiplication by X^n</span>
<span class="Comment">RightShift by n means division by X^n</span>

<span class="Comment">A negative shift amount reverses the direction of the shift.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZ_pX <span class="Statement">operator</span>&lt;&lt;(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
ZZ_pX <span class="Statement">operator</span>&gt;&gt;(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);

ZZ_pX&amp; <span class="Statement">operator</span>&lt;&lt;=(ZZ_pX&amp; x, <span class="Type">long</span> n);
ZZ_pX&amp; <span class="Statement">operator</span>&gt;&gt;=(ZZ_pX&amp; x, <span class="Type">long</span> n);

<span class="Comment">// procedural versions:</span>

<span class="Type">void</span> LeftShift(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
ZZ_pX LeftShift(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> RightShift(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
ZZ_pX RightShift(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Division</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Comment">// operator notation:</span>

ZZ_pX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
ZZ_pX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_p&amp; b);
ZZ_pX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> b);


ZZ_pX&amp; <span class="Statement">operator</span>/=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; b);
ZZ_pX&amp; <span class="Statement">operator</span>/=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_p&amp; b);
ZZ_pX&amp; <span class="Statement">operator</span>/=(ZZ_pX&amp; x, <span class="Type">long</span> b);

ZZ_pX <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);

ZZ_pX&amp; <span class="Statement">operator</span>%=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; b);


<span class="Comment">// procedural versions:</span>


<span class="Type">void</span> DivRem(ZZ_pX&amp; q, ZZ_pX&amp; r, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// q = a/b, r = a%b</span>

<span class="Type">void</span> div(ZZ_pX&amp; q, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Type">void</span> div(ZZ_pX&amp; q, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_p&amp; b);
<span class="Type">void</span> div(ZZ_pX&amp; q, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> b);
<span class="Comment">// q = a/b</span>

<span class="Type">void</span> rem(ZZ_pX&amp; r, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// r = a%b</span>

<span class="Type">long</span> divide(ZZ_pX&amp; q, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>

<span class="Type">long</span> divide(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// if b | a, sets q = a/b and returns 1; otherwise returns 0</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                   GCD's</span>

<span class="Comment">These routines are intended for use when p is prime.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> GCD(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
ZZ_pX GCD(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// x = GCD(a, b),  x is always monic (or zero if a==b==0).</span>


<span class="Type">void</span> XGCD(ZZ_pX&amp; d, ZZ_pX&amp; s, ZZ_pX&amp; t, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// d = gcd(a,b), a s + b t = d </span>


<span class="Comment">// NOTE: A classical algorithm is used, switching over to a</span>
<span class="Comment">// &quot;half-GCD&quot; algorithm for large degree</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                                  Input/Output</span>

<span class="Comment">I/O format:</span>

<span class="Comment">   [a_0 a_1 ... a_n],</span>

<span class="Comment">represents the polynomial a_0 + a_1*X + ... + a_n*X^n.</span>

<span class="Comment">On output, all coefficients will be integers between 0 and p-1, and</span>
<span class="Comment">a_n not zero (the zero polynomial is [ ]).  On input, the coefficients</span>
<span class="Comment">are arbitrary integers which are reduced modulo p, and leading zeros</span>
<span class="Comment">stripped.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

istream&amp; <span class="Statement">operator</span>&gt;&gt;(istream&amp; s, ZZ_pX&amp; x);
ostream&amp; <span class="Statement">operator</span>&lt;&lt;(ostream&amp; s, <span class="Type">const</span> ZZ_pX&amp; a);


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Some utility routines</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> diff(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a); <span class="Comment">// x = derivative of a</span>
ZZ_pX diff(<span class="Type">const</span> ZZ_pX&amp; a);

<span class="Type">void</span> MakeMonic(ZZ_pX&amp; x);
<span class="Comment">// if x != 0 makes x into its monic associate; LeadCoeff(x) must be</span>
<span class="Comment">// invertible in this case.</span>

<span class="Type">void</span> reverse(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> hi);
ZZ_pX reverse(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> hi);

<span class="Type">void</span> reverse(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a);
ZZ_pX reverse(<span class="Type">const</span> ZZ_pX&amp; a);

<span class="Comment">// x = reverse of a[0]..a[hi] (hi &gt;= -1);</span>
<span class="Comment">// hi defaults to deg(a) in second version</span>

<span class="Type">void</span> VectorCopy(vec_ZZ_p&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
vec_ZZ_p VectorCopy(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
<span class="Comment">// x = copy of coefficient vector of a of length exactly n.</span>
<span class="Comment">// input is truncated or padded with zeroes as appropriate.</span>




<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             Random Polynomials</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> random(ZZ_pX&amp; x, <span class="Type">long</span> n);
ZZ_pX random_ZZ_pX(<span class="Type">long</span> n);
<span class="Comment">// generate a random polynomial of degree &lt; n </span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                    Polynomial Evaluation and related problems</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> BuildFromRoots(ZZ_pX&amp; x, <span class="Type">const</span> vec_ZZ_p&amp; a);
ZZ_pX BuildFromRoots(<span class="Type">const</span> vec_ZZ_p&amp; a);
<span class="Comment">// computes the polynomial (X-a[0]) ... (X-a[n-1]), where n = a.length()</span>

<span class="Type">void</span> eval(ZZ_p&amp; b, <span class="Type">const</span> ZZ_pX&amp; f, <span class="Type">const</span> ZZ_p&amp; a);
ZZ_p eval(<span class="Type">const</span> ZZ_pX&amp; f, <span class="Type">const</span> ZZ_p&amp; a);
<span class="Comment">// b = f(a)</span>

<span class="Type">void</span> eval(vec_ZZ_p&amp; b, <span class="Type">const</span> ZZ_pX&amp; f, <span class="Type">const</span> vec_ZZ_p&amp; a);
vec_ZZ_p eval(<span class="Type">const</span> ZZ_pX&amp; f, <span class="Type">const</span> vec_ZZ_p&amp; a);
<span class="Comment">//  b.SetLength(a.length()).  b[i] = f(a[i]) for 0 &lt;= i &lt; a.length()</span>

<span class="Type">void</span> interpolate(ZZ_pX&amp; f, <span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">const</span> vec_ZZ_p&amp; b);
ZZ_pX interpolate(<span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">const</span> vec_ZZ_p&amp; b);
<span class="Comment">// interpolates the polynomial f satisfying f(a[i]) = b[i].  p should</span>
<span class="Comment">// be prime.</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                       Arithmetic mod X^n</span>

<span class="Comment">All routines require n &gt;= 0, otherwise an error is raised.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> trunc(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n); <span class="Comment">// x = a % X^n</span>
ZZ_pX trunc(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);

<span class="Type">void</span> MulTrunc(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">long</span> n);
ZZ_pX MulTrunc(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">long</span> n);
<span class="Comment">// x = a * b % X^n</span>

<span class="Type">void</span> SqrTrunc(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
ZZ_pX SqrTrunc(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
<span class="Comment">// x = a^2 % X^n</span>

<span class="Type">void</span> InvTrunc(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
ZZ_pX InvTrunc(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> n);
<span class="Comment">// computes x = a^{-1} % X^m.  Must have ConstTerm(a) invertible.</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                Modular Arithmetic (without pre-conditioning)</span>

<span class="Comment">Arithmetic mod f.</span>

<span class="Comment">All inputs and outputs are polynomials of degree less than deg(f), and</span>
<span class="Comment">deg(f) &gt; 0.</span>

<span class="Comment">NOTE: if you want to do many computations with a fixed f, use the</span>
<span class="Comment">ZZ_pXModulus data structure and associated routines below for better</span>
<span class="Comment">performance.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> MulMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_pX MulMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// x = (a * b) % f</span>

<span class="Type">void</span> SqrMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_pX SqrMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// x = a^2 % f</span>

<span class="Type">void</span> MulByXMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_pX MulByXMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// x = (a * X) mod f</span>
<span class="Comment">// NOTE: thread boosting enabled only if x does not alias a</span>

<span class="Type">void</span> InvMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_pX InvMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// x = a^{-1} % f, error is a is not invertible</span>

<span class="Type">long</span> InvModStatus(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// if (a, f) = 1, returns 0 and sets x = a^{-1} % f; otherwise,</span>
<span class="Comment">// returns 1 and sets x = (a, f)</span>


<span class="Comment">// for modular exponentiation, see below</span>



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                     Modular Arithmetic with Pre-Conditioning</span>

<span class="Comment">If you need to do a lot of arithmetic modulo a fixed f, build a</span>
<span class="Comment">ZZ_pXModulus F for f.  This pre-computes information about f that</span>
<span class="Comment">speeds up subsequent computations.</span>

<span class="Comment">It is required that deg(f) &gt; 0 and that LeadCoeff(f) is invertible.</span>

<span class="Comment">As an example, the following routine computes the product modulo f of a vector</span>
<span class="Comment">of polynomials.</span>

<span class="Comment">#include &lt;NTL/ZZ_pX.h&gt;</span>

<span class="Comment">void product(ZZ_pX&amp; x, const vec_ZZ_pX&amp; v, const ZZ_pX&amp; f)</span>
<span class="Comment">{</span>
<span class="Comment">   ZZ_pXModulus F(f);</span>
<span class="Comment">   ZZ_pX res;</span>
<span class="Comment">   res = 1;</span>
<span class="Comment">   long i;</span>
<span class="Comment">   for (i = 0; i &lt; v.length(); i++)</span>
<span class="Comment">      MulMod(res, res, v[i], F); </span>
<span class="Comment">   x = res;</span>
<span class="Comment">}</span>

<span class="Comment">Note that automatic conversions are provided so that a ZZ_pX can</span>
<span class="Comment">be used wherever a ZZ_pXModulus is required, and a ZZ_pXModulus</span>
<span class="Comment">can be used wherever a ZZ_pX is required.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">class</span> ZZ_pXModulus {
<span class="Statement">public</span>:
   ZZ_pXModulus(); <span class="Comment">// initially in an unusable state</span>

   ZZ_pXModulus(<span class="Type">const</span> ZZ_pXModulus&amp;);  <span class="Comment">// copy</span>

   ZZ_pXModulus&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_pXModulus&amp;); <span class="Comment">// assignment</span>

   ~ZZ_pXModulus();

   ZZ_pXModulus(<span class="Type">const</span> ZZ_pX&amp; f); <span class="Comment">// initialize with f, deg(f) &gt; 0</span>

   <span class="Statement">operator</span> <span class="Type">const</span> ZZ_pX&amp; () <span class="Type">const</span>;
   <span class="Comment">// read-only access to f, implicit conversion operator</span>

   <span class="Type">const</span> ZZ_pX&amp; val() <span class="Type">const</span>;
   <span class="Comment">// read-only access to f, explicit notation</span>

};

<span class="Type">void</span> build(ZZ_pXModulus&amp; F, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// pre-computes information about f and stores it in F.</span>
<span class="Comment">// Note that the declaration ZZ_pXModulus F(f) is equivalent to</span>
<span class="Comment">// ZZ_pXModulus F; build(F, f).</span>

<span class="Comment">// In the following, f refers to the polynomial f supplied to the</span>
<span class="Comment">// build routine, and n = deg(f).</span>

<span class="Type">long</span> deg(<span class="Type">const</span> ZZ_pXModulus&amp; F);  <span class="Comment">// return n=deg(f)</span>

<span class="Type">void</span> MulMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX MulMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// x = (a * b) % f; deg(a), deg(b) &lt; n</span>

<span class="Type">void</span> SqrMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX SqrMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// x = a^2 % f; deg(a) &lt; n</span>

<span class="Type">void</span> PowerMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX PowerMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Type">void</span> PowerMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX PowerMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">long</span> e, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// x = a^e % f; deg(a) &lt; n (e may be negative)</span>

<span class="Type">void</span> PowerXMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX PowerXMod(<span class="Type">const</span> ZZ&amp; e, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Type">void</span> PowerXMod(ZZ_pX&amp; x, <span class="Type">long</span> e, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX PowerXMod(<span class="Type">long</span> e, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// x = X^e % f (e may be negative)</span>

<span class="Type">void</span> PowerXPlusAMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_p&amp; a, <span class="Type">const</span> ZZ&amp; e,
                    <span class="Type">const</span> ZZ_pXModulus&amp; F);

ZZ_pX PowerXPlusAMod(<span class="Type">const</span> ZZ_p&amp; a, <span class="Type">const</span> ZZ&amp; e,
                           <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Type">void</span> PowerXPlusAMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_p&amp; a, <span class="Type">long</span> e,
                    <span class="Type">const</span> ZZ_pXModulus&amp; F);

ZZ_pX PowerXPlusAMod(<span class="Type">const</span> ZZ_p&amp; a, <span class="Type">long</span> e,
                           <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// x = (X + a)^e % f (e may be negative)</span>


<span class="Type">void</span> rem(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// x = a % f</span>

<span class="Type">void</span> DivRem(ZZ_pX&amp; q, ZZ_pX&amp; r, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// q = a/f, r = a%f</span>

<span class="Type">void</span> div(ZZ_pX&amp; q, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// q = a/f</span>

<span class="Comment">// operator notation:</span>

ZZ_pX <span class="Statement">operator</span>/(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX <span class="Statement">operator</span>%(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);

ZZ_pX&amp; <span class="Statement">operator</span>/=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX&amp; <span class="Statement">operator</span>%=(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pXModulus&amp; F);



<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>


<span class="Comment">                                More Pre-Conditioning</span>

<span class="Comment">If you need to compute a * b % f for a fixed b, but for many a's, it</span>
<span class="Comment">is much more efficient to first build a ZZ_pXMultiplier B for b, and</span>
<span class="Comment">then use the MulMod routine below.</span>

<span class="Comment">Here is an example that multiplies each element of a vector by a fixed</span>
<span class="Comment">polynomial modulo f.</span>

<span class="Comment">#include &lt;NTL/ZZ_pX.h&gt;</span>

<span class="Comment">void mul(vec_ZZ_pX&amp; v, const ZZ_pX&amp; b, const ZZ_pX&amp; f)</span>
<span class="Comment">{</span>
<span class="Comment">   ZZ_pXModulus F(f);</span>
<span class="Comment">   ZZ_pXMultiplier B(b, F);</span>
<span class="Comment">   long i;</span>
<span class="Comment">   for (i = 0; i &lt; v.length(); i++)</span>
<span class="Comment">      MulMod(v[i], v[i], B, F);</span>
<span class="Comment">}</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">class</span> ZZ_pXMultiplier {
<span class="Statement">public</span>:
   ZZ_pXMultiplier(); <span class="Comment">// initially zero</span>

   ZZ_pXMultiplier(<span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">const</span> ZZ_pXModulus&amp; F);
      <span class="Comment">// initializes with b mod F, where deg(b) &lt; deg(F)</span>

   ZZ_pXMultiplier(<span class="Type">const</span> ZZ_pXMultiplier&amp;);  <span class="Comment">// copy</span>

   ZZ_pXMultiplier&amp; <span class="Statement">operator</span>=(<span class="Type">const</span> ZZ_pXMultiplier&amp;);  <span class="Comment">// assignment</span>

   ~ZZ_pXMultiplier();

   <span class="Type">const</span> ZZ_pX&amp; val() <span class="Type">const</span>; <span class="Comment">// read-only access to b</span>

};


<span class="Type">void</span> build(ZZ_pXMultiplier&amp; B, <span class="Type">const</span> ZZ_pX&amp; b, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// pre-computes information about b and stores it in B; deg(b) &lt;</span>
<span class="Comment">// deg(F)</span>

<span class="Type">void</span> MulMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXMultiplier&amp; B,
                                      <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// x = (a * b) % F; deg(a) &lt; deg(F)</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                             vectors of ZZ_pX's</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">typedef</span> Vec&lt;ZZ_pX&gt; vec_ZZ_pX; <span class="Comment">// backward compatibility</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Modular Composition</span>

<span class="Comment">Modular composition is the problem of computing g(h) mod f for</span>
<span class="Comment">polynomials f, g, and h.</span>

<span class="Comment">The algorithm employed is that of Brent &amp; Kung (Fast algorithms for</span>
<span class="Comment">manipulating formal power series, JACM 25:581-595, 1978), which uses</span>
<span class="Comment">O(n^{1/2}) modular polynomial multiplications, and O(n^2) scalar</span>
<span class="Comment">operations.</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> CompMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX CompMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pX&amp; h,
                    <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// x = g(h) mod f; deg(h) &lt; n</span>

<span class="Type">void</span> Comp2Mod(ZZ_pX&amp; x1, ZZ_pX&amp; x2, <span class="Type">const</span> ZZ_pX&amp; g1, <span class="Type">const</span> ZZ_pX&amp; g2,
              <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// xi = gi(h) mod f (i=1,2); deg(h) &lt; n.</span>

<span class="Type">void</span> Comp3Mod(ZZ_pX&amp; x1, ZZ_pX&amp; x2, ZZ_pX&amp; x3,
              <span class="Type">const</span> ZZ_pX&amp; g1, <span class="Type">const</span> ZZ_pX&amp; g2, <span class="Type">const</span> ZZ_pX&amp; g3,
              <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// xi = gi(h) mod f (i=1..3); deg(h) &lt; n.</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                     Composition with Pre-Conditioning</span>

<span class="Comment">If a single h is going to be used with many g's then you should build</span>
<span class="Comment">a ZZ_pXArgument for h, and then use the compose routine below.  The</span>
<span class="Comment">routine build computes and stores h, h^2, ..., h^m mod f.  After this</span>
<span class="Comment">pre-computation, composing a polynomial of degree roughly n with h</span>
<span class="Comment">takes n/m multiplies mod f, plus n^2 scalar multiplies.  Thus,</span>
<span class="Comment">increasing m increases the space requirement and the pre-computation</span>
<span class="Comment">time, but reduces the composition time.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">struct</span> ZZ_pXArgument {
   vec_ZZ_pX H;
};

<span class="Type">void</span> build(ZZ_pXArgument&amp; H, <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);
<span class="Comment">// Pre-Computes information about h.  m &gt; 0, deg(h) &lt; n.</span>

<span class="Type">void</span> CompMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXArgument&amp; H,
             <span class="Type">const</span> ZZ_pXModulus&amp; F);

ZZ_pX CompMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXArgument&amp; H,
                    <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Type">extern</span> <span class="Type">thread_local</span> <span class="Type">long</span> ZZ_pXArgBound;

<span class="Comment">// Initially 0.  If this is set to a value greater than zero, then</span>
<span class="Comment">// composition routines will allocate a table of no than about</span>
<span class="Comment">// ZZ_pXArgBound KB.  Setting this value affects all compose routines</span>
<span class="Comment">// and the power projection and minimal polynomial routines below, </span>
<span class="Comment">// and indirectly affects many routines in ZZ_pXFactoring.</span>

<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                     power projection routines</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">void</span> project(ZZ_p&amp; x, <span class="Type">const</span> ZZ_pVector&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
ZZ_p project(<span class="Type">const</span> ZZ_pVector&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// x = inner product of a with coefficient vector of b</span>


<span class="Type">void</span> ProjectPowers(vec_ZZ_p&amp; x, <span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F);

vec_ZZ_p ProjectPowers(<span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// Computes the vector</span>

<span class="Comment">//    project(a, 1), project(a, h), ..., project(a, h^{k-1} % f).  </span>

<span class="Comment">// This operation is the &quot;transpose&quot; of the modular composition operation.</span>

<span class="Type">void</span> ProjectPowers(vec_ZZ_p&amp; x, <span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> ZZ_pXArgument&amp; H, <span class="Type">const</span> ZZ_pXModulus&amp; F);

vec_ZZ_p ProjectPowers(<span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> ZZ_pXArgument&amp; H, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// same as above, but uses a pre-computed ZZ_pXArgument</span>


<span class="Type">void</span> UpdateMap(vec_ZZ_p&amp; x, <span class="Type">const</span> vec_ZZ_p&amp; a,
               <span class="Type">const</span> ZZ_pXMultiplier&amp; B, <span class="Type">const</span> ZZ_pXModulus&amp; F);

vec_ZZ_p UpdateMap(<span class="Type">const</span> vec_ZZ_p&amp; a,
               <span class="Type">const</span> ZZ_pXMultiplier&amp; B, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// Computes the vector</span>

<span class="Comment">//    project(a, b), project(a, (b*X)%f), ..., project(a, (b*X^{n-1})%f)</span>

<span class="Comment">// Restriction: must have a.length() &lt;= deg(F).</span>
<span class="Comment">// This is &quot;transposed&quot; MulMod by B.</span>
<span class="Comment">// Input may have &quot;high order&quot; zeroes stripped.</span>
<span class="Comment">// Output will always have high order zeroes stripped.</span>





<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">        Faster Composition and Projection with Pre-Conditioning</span>

<span class="Comment">A new, experimental version of composition with preconditioning.</span>
<span class="Comment">This interface was introduced in NTL v10.3.0, and it should be </span>
<span class="Comment">considered a preliminary interface and subject to change.</span>

<span class="Comment">The class ZZ_pXNewArgument is similar to ZZ_pXArgument, but with</span>
<span class="Comment">a different internal layout.  Copy constructor and assignment work.</span>

<span class="Comment">Note that all NTL modular composition and power projection routines, </span>
<span class="Comment">as well as other routines that use modular composition power projection </span>
<span class="Comment">internally, now use this new class.</span>

<span class="Comment">Note also that these routines do not pay any attention to the</span>
<span class="Comment">ZZ_pXArgBound variable.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>

<span class="Type">class</span> ZZ_pXNewArgument {
 <span class="Comment">// ...</span>
};

<span class="Type">void</span> build(ZZ_pXNewArgument&amp; H, <span class="Type">const</span> ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);
<span class="Comment">// same functionality as the corresponding ZZ_pXArgument-based routine</span>

<span class="Type">void</span> CompMod(ZZ_pX&amp; x, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXNewArgument&amp; H,
             <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// same functionality as the corresponding ZZ_pXArgument-based routine</span>

<span class="Type">void</span> ProjectPowers(vec_ZZ_p&amp; x, <span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> k,
                   <span class="Type">const</span> ZZ_pXNewArgument&amp; H, <span class="Type">const</span> ZZ_pXModulus&amp; F);
<span class="Comment">// same functionality as the corresponding ZZ_pXArgument-based routine</span>








<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                              Minimum Polynomials</span>

<span class="Comment">These routines should be used with prime p.</span>

<span class="Comment">All of these routines implement the algorithm from [Shoup, J. Symbolic</span>
<span class="Comment">Comp. 17:371-391, 1994] and [Shoup, J. Symbolic Comp. 20:363-397,</span>
<span class="Comment">1995], based on transposed modular composition and the</span>
<span class="Comment">Berlekamp/Massey algorithm.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> MinPolySeq(ZZ_pX&amp; h, <span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> m);
ZZ_pX MinPolySeq(<span class="Type">const</span> vec_ZZ_p&amp; a, <span class="Type">long</span> m);
<span class="Comment">// computes the minimum polynomial of a linealy generated sequence; m</span>
<span class="Comment">// is a bound on the degree of the polynomial; required: a.length() &gt;=</span>
<span class="Comment">// 2*m</span>

<span class="Type">void</span> ProbMinPolyMod(ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);
ZZ_pX ProbMinPolyMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);

<span class="Type">void</span> ProbMinPolyMod(ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX ProbMinPolyMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// computes the monic minimal polynomial if (g mod f).  m = a bound on</span>
<span class="Comment">// the degree of the minimal polynomial; in the second version, this</span>
<span class="Comment">// argument defaults to n.  The algorithm is probabilistic, always</span>
<span class="Comment">// returns a divisor of the minimal polynomial, and returns a proper</span>
<span class="Comment">// divisor with probability at most m/p.</span>

<span class="Type">void</span> MinPolyMod(ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);
ZZ_pX MinPolyMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);

<span class="Type">void</span> MinPolyMod(ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX MinPolyMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// same as above, but guarantees that result is correct</span>

<span class="Type">void</span> IrredPolyMod(ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);
ZZ_pX IrredPolyMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F, <span class="Type">long</span> m);

<span class="Type">void</span> IrredPolyMod(ZZ_pX&amp; h, <span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_pX IrredPolyMod(<span class="Type">const</span> ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Comment">// same as above, but assumes that f is irreducible, or at least that</span>
<span class="Comment">// the minimal poly of g is itself irreducible.  The algorithm is</span>
<span class="Comment">// deterministic (and is always correct).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                   Traces, norms, resultants</span>

<span class="Comment">These routines should be used with prime p.</span>

<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> TraceMod(ZZ_p&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);
ZZ_p TraceMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; F);

<span class="Type">void</span> TraceMod(ZZ_p&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_p TraceMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pXModulus&amp; f);
<span class="Comment">// x = Trace(a mod f); deg(a) &lt; deg(f)</span>


<span class="Type">void</span> TraceVec(vec_ZZ_p&amp; S, <span class="Type">const</span> ZZ_pX&amp; f);
vec_ZZ_p TraceVec(<span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// S[i] = Trace(X^i mod f), i = 0..deg(f)-1; 0 &lt; deg(f)</span>

<span class="Comment">// The above trace routines implement the asymptotically fast trace</span>
<span class="Comment">// algorithm from [von zur Gathen and Shoup, Computational Complexity,</span>
<span class="Comment">// 1992].</span>

<span class="Type">void</span> NormMod(ZZ_p&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_p NormMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// x = Norm(a mod f); 0 &lt; deg(f), deg(a) &lt; deg(f)</span>

<span class="Type">void</span> resultant(ZZ_p&amp; x, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
ZZ_p resultant(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; b);
<span class="Comment">// x = resultant(a, b)</span>

<span class="Type">void</span> CharPolyMod(ZZ_pX&amp; g, <span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
ZZ_pX CharPolyMod(<span class="Type">const</span> ZZ_pX&amp; a, <span class="Type">const</span> ZZ_pX&amp; f);
<span class="Comment">// g = charcteristic polynomial of (a mod f); 0 &lt; deg(f), deg(g) &lt;</span>
<span class="Comment">// deg(f);  this routine works for arbitrary f;  if f is irreducible,</span>
<span class="Comment">// it is faster to use the IrredPolyMod routine, and then exponentiate</span>
<span class="Comment">// if necessary (since in this case the CharPoly is just a power of</span>
<span class="Comment">// the IrredPoly).</span>


<span class="Comment">/*</span><span class="Comment">*************************************************************************\</span>

<span class="Comment">                           Miscellany</span>


<span class="Comment">\*************************************************************************</span><span class="Comment">*/</span>


<span class="Type">void</span> clear(ZZ_pX&amp; x) <span class="Comment">// x = 0</span>
<span class="Type">void</span> set(ZZ_pX&amp; x); <span class="Comment">// x = 1</span>

<span class="Type">void</span> ZZ_pX::kill();
<span class="Comment">// f.kill() sets f to 0 and frees all memory held by f; Equivalent to</span>
<span class="Comment">// f.rep.kill().</span>

ZZ_pX::ZZ_pX(INIT_SIZE_TYPE, <span class="Type">long</span> n);
<span class="Comment">// ZZ_pX(INIT_SIZE, n) initializes to zero, but space is pre-allocated</span>
<span class="Comment">// for n coefficients</span>

<span class="Type">static</span> <span class="Type">const</span> ZZ_pX&amp; ZZ_pX::zero();
<span class="Comment">// ZZ_pX::zero() is a read-only reference to 0</span>

<span class="Type">void</span> swap(ZZ_pX&amp; x, ZZ_pX&amp; y);
<span class="Comment">// swap x and y (via &quot;pointer swapping&quot;)</span>

<span class="Type">void</span> ZZ_pX::swap(ZZ_pX&amp; x);
<span class="Comment">// swap member function</span>


ZZ_pX::ZZ_pX(<span class="Type">long</span> i, <span class="Type">const</span> ZZ_p&amp; c);
ZZ_pX::ZZ_pX(<span class="Type">long</span> i, <span class="Type">long</span> c);
<span class="Comment">// initialize to c*X^i, provided for backward compatibility</span>
</pre>
</body>
</html>
<!-- vim: set foldmethod=manual : -->