Codebase list cppad / upstream/2015.00.00.7 doc / atomic_tangent.cpp.xml
upstream/2015.00.00.7

Tree @upstream/2015.00.00.7 (Download .tar.gz)

atomic_tangent.cpp.xml @upstream/2015.00.00.7raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
<?xml version='1.0'?>
<html xmlns='http://www.w3.org/1999/xhtml'
      xmlns:math='http://www.w3.org/1998/Math/MathML'
>
<head>
<title>Tan and Tanh as User Atomic Operations: Example and Test</title>
<meta http-equiv='Content-Type' content='text/html' charset='utf-8'/>
<meta name="description" id="description" content="Tan and Tanh as User Atomic Operations: Example and Test"/>
<meta name="keywords" id="keywords" content=" tan and tanh as user atomic operations: example test tangent operation theory start class definition constructor forward reverse for_sparse_jac rev_sparse_jac rev_sparse_hes end use function recording large x values "/>
<style type='text/css'>
body { color : black }
body { background-color : white }
A:link { color : blue }
A:visited { color : purple }
A:active { color : purple }
</style>
<script type='text/javascript' language='JavaScript' src='_atomic_tangent.cpp_xml.js'>
</script>
</head>
<body>
<table><tr>
<td>
<a href="http://www.coin-or.org/CppAD/" target="_top"><img border="0" src="_image.gif"/></a>
</td>
<td><a href="atomic_reciprocal.cpp.xml" target="_top">Prev</a>
</td><td><a href="atomic_hes_sparse.cpp.xml" target="_top">Next</a>
</td><td>
<select onchange='choose_across0(this)'>
<option>Index-&gt;</option>
<option>contents</option>
<option>reference</option>
<option>index</option>
<option>search</option>
<option>external</option>
</select>
</td>
<td>
<select onchange='choose_up0(this)'>
<option>Up-&gt;</option>
<option>CppAD</option>
<option>AD</option>
<option>ADValued</option>
<option>atomic</option>
<option>atomic_base</option>
<option>atomic_tangent.cpp</option>
</select>
</td>
<td>
<select onchange='choose_down3(this)'>
<option>ADValued-&gt;</option>
<option>Arithmetic</option>
<option>std_math_ad</option>
<option>MathOther</option>
<option>CondExp</option>
<option>Discrete</option>
<option>atomic</option>
</select>
</td>
<td>
<select onchange='choose_down2(this)'>
<option>atomic-&gt;</option>
<option>checkpoint</option>
<option>atomic_base</option>
</select>
</td>
<td>
<select onchange='choose_down1(this)'>
<option>atomic_base-&gt;</option>
<option>atomic_ctor</option>
<option>atomic_option</option>
<option>atomic_afun</option>
<option>atomic_forward</option>
<option>atomic_reverse</option>
<option>atomic_for_sparse_jac</option>
<option>atomic_rev_sparse_jac</option>
<option>atomic_rev_sparse_hes</option>
<option>atomic_base_clear</option>
<option>atomic_get_started.cpp</option>
<option>atomic_norm_sq.cpp</option>
<option>atomic_reciprocal.cpp</option>
<option>atomic_tangent.cpp</option>
<option>atomic_hes_sparse.cpp</option>
<option>atomic_mat_mul.cpp</option>
</select>
</td>
<td>atomic_tangent.cpp</td>
<td>
<select onchange='choose_current0(this)'>
<option>Headings-&gt;</option>
<option>Theory</option>
<option>Start Class Definition</option>
<option>Constructor</option>
<option>forward</option>
<option>reverse</option>
<option>for_sparse_jac</option>
<option>rev_sparse_jac</option>
<option>rev_sparse_hes</option>
<option>End Class Definition</option>
<option>Use Atomic Function</option>
<option>---..Constructor</option>
<option>---..Recording</option>
<option>---..forward</option>
<option>---..reverse</option>
<option>---..for_sparse_jac</option>
<option>---..rev_sparse_jac</option>
<option>---..rev_sparse_hes</option>
<option>---..Large x Values</option>
</select>
</td>
</tr></table><br/>



<center><b><big><big>Tan and Tanh as User Atomic Operations: Example and Test</big></big></b></center>
<br/>
<b><big><a name="Theory" id="Theory">Theory</a></big></b>
<br/>
The code below uses the <a href="tan_forward.xml" target="_top"><span style='white-space: nowrap'>tan_forward</span></a>
 and <a href="tan_reverse.xml" target="_top"><span style='white-space: nowrap'>tan_reverse</span></a>

to implement the tangent and hyperbolic tangent
functions as user atomic operations.



<br/>
<br/>
<b><big><a name="Start Class Definition" id="Start Class Definition">Start Class Definition</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
# include &lt;cppad/cppad.hpp&gt;
namespace { // Begin empty namespace 
using CppAD::vector;
//
// a utility to compute the union of two sets.
void my_union(
	std::set&lt;size_t&gt;&amp;         result  ,
	const std::set&lt;size_t&gt;&amp;   left    ,
	const std::set&lt;size_t&gt;&amp;   right   )
{	std::set&lt;size_t&gt; temp;
	std::set_union(
		left.begin()              ,
		left.end()                ,
		right.begin()             ,
		right.end()               ,
		std::inserter(temp, temp.begin())
	);
	result.swap(temp);
}
//
class atomic_tangent : public CppAD::atomic_base&lt;float&gt; {
</pre></font></code>

<br/>
<br/>
<b><big><a name="Constructor" id="Constructor">Constructor</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
	private:
	const bool hyperbolic_; // is this hyperbolic tangent
	public:
	// constructor
	atomic_tangent(const char* name, bool hyperbolic) 
	: CppAD::atomic_base&lt;float&gt;(name),
	hyperbolic_(hyperbolic)
	{ }
	private:
</pre></font></code>

<br/>
<br/>
<b><big><a name="forward" id="forward">forward</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
	// forward mode routine called by CppAD
	bool forward(
		size_t                    p ,
		size_t                    q ,
		const vector&lt;bool&gt;&amp;      vx ,
		      vector&lt;bool&gt;&amp;     vzy ,
		const vector&lt;float&gt;&amp;     tx ,
		      vector&lt;float&gt;&amp;    tzy
	)
	{	size_t q1 = q + 1;
		size_t n  = tx.size()  / q1;
		size_t m  = tzy.size() / q1;
		assert( n == 1 );
		assert( m == 2 );
		assert( p &lt;= q );
		size_t j, k;

		// check if this is during the call to old_tan(id, ax, ay)
		if( vx.size() &gt; 0 )
		{	// set variable flag for both y an z
			vzy[0] = vx[0];
			vzy[1] = vx[0];
		}

		if( p == 0 )
		{	// z^{(0)} = tan( x^{(0)} ) or tanh( x^{(0)} )
			if( hyperbolic_ )
				tzy[0] = tanh( tx[0] );
			else	tzy[0] = tan( tx[0] );

			// y^{(0)} = z^{(0)} * z^{(0)}
			tzy[q1 + 0] = tzy[0] * tzy[0];
		
			p++;
		}
		for(j = p; j &lt;= q; j++)
		{	float j_inv = 1.f / float(j);
			if( hyperbolic_ )
				j_inv = - j_inv;

			// z^{(j)} = x^{(j)} +- sum_{k=1}^j k x^{(k)} y^{(j-k)} / j
			tzy[j] = tx[j];  
			for(k = 1; k &lt;= j; k++)
				tzy[j] += tx[k] * tzy[q1 + j-k] * k * j_inv;

			// y^{(j)} = sum_{k=0}^j z^{(k)} z^{(j-k)}
			tzy[q1 + j] = 0.;
			for(k = 0; k &lt;= j; k++)
				tzy[q1 + j] += tzy[k] * tzy[j-k];
		}

		// All orders are implemented and there are no possible errors
		return true;
	}
</pre></font></code>

<br/>
<br/>
<b><big><a name="reverse" id="reverse">reverse</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
	// reverse mode routine called by CppAD
	virtual bool reverse(
		size_t                    q ,
		const vector&lt;float&gt;&amp;     tx ,
		const vector&lt;float&gt;&amp;    tzy ,
		      vector&lt;float&gt;&amp;     px ,
		const vector&lt;float&gt;&amp;    pzy
	)
	{	size_t q1 = q + 1;
		size_t n  = tx.size()  / q1;
		size_t m  = tzy.size() / q1;	
		assert( px.size()  == n * q1 );
		assert( pzy.size() == m * q1 );
		assert( n == 1 );
		assert( m == 2 );

		size_t j, k;

		// copy because partials w.r.t. y and z need to change
		vector&lt;float&gt; qzy = pzy;

		// initialize accumultion of reverse mode partials
		for(k = 0; k &lt; q1; k++)
			px[k] = 0.;

		// eliminate positive orders
		for(j = q; j &gt; 0; j--)
		{	float j_inv = 1.f / float(j);
			if( hyperbolic_ )
				j_inv = - j_inv;

			// H_{x^{(k)}} += delta(j-k) +- H_{z^{(j)} y^{(j-k)} * k / j
			px[j] += qzy[j];
			for(k = 1; k &lt;= j; k++)
				px[k] += qzy[j] * tzy[q1 + j-k] * k * j_inv;  

			// H_{y^{j-k)} += +- H_{z^{(j)} x^{(k)} * k / j
			for(k = 1; k &lt;= j; k++)
				qzy[q1 + j-k] += qzy[j] * tx[k] * k * j_inv;  

			// H_{z^{(k)}} += H_{y^{(j-1)}} * z^{(j-k-1)} * 2. 
			for(k = 0; k &lt; j; k++)
				qzy[k] += qzy[q1 + j-1] * tzy[j-k-1] * 2.f; 
		}

		// eliminate order zero
		if( hyperbolic_ )
			px[0] += qzy[0] * (1.f - tzy[q1 + 0]);
		else
			px[0] += qzy[0] * (1.f + tzy[q1 + 0]);

		return true; 
	}
</pre></font></code>

<br/>
<br/>
<b><big><a name="for_sparse_jac" id="for_sparse_jac">for_sparse_jac</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
	// forward Jacobian sparsity routine called by CppAD
	virtual bool for_sparse_jac(
		size_t                                p ,
		const vector&lt;bool&gt;&amp;                   r ,
		      vector&lt;bool&gt;&amp;                   s )
	{	size_t n = r.size() / p;
		size_t m = s.size() / p;
		assert( n == 1 );
		assert( m == 2 );

		// sparsity for S(x) = f'(x) * R
		for(size_t j = 0; j &lt; p; j++)
		{	s[0 * p + j] = r[j];
			s[1 * p + j] = r[j];
		}

		return true;
	}
	// forward Jacobian sparsity routine called by CppAD
	virtual bool for_sparse_jac(
		size_t                                p ,
		const vector&lt; std::set&lt;size_t&gt; &gt;&amp;     r ,
		      vector&lt; std::set&lt;size_t&gt; &gt;&amp;     s )
	{	size_t n = r.size();
		size_t m = s.size();
		assert( n == 1 );
		assert( m == 2 );

		// sparsity for S(x) = f'(x) * R
		s[0] = r[0];
		s[1] = r[0];

		return true;
	}
</pre></font></code>

<br/>
<br/>
<b><big><a name="rev_sparse_jac" id="rev_sparse_jac">rev_sparse_jac</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
	// reverse Jacobian sparsity routine called by CppAD
	virtual bool rev_sparse_jac(
		size_t                                p ,
		const vector&lt;bool&gt;&amp;                  rt ,
		      vector&lt;bool&gt;&amp;                  st )
	{	size_t n = st.size() / p;
		size_t m = rt.size() / p;
		assert( n == 1 );
		assert( m == 2 );

		// sparsity for S(x)^T = f'(x)^T * R^T
		for(size_t j = 0; j &lt; p; j++)
			st[j] = rt[0 * p + j] | rt[1 * p + j];

		return true; 
	}
	// reverse Jacobian sparsity routine called by CppAD
	virtual bool rev_sparse_jac(
		size_t                                p ,
		const vector&lt; std::set&lt;size_t&gt; &gt;&amp;    rt ,
		      vector&lt; std::set&lt;size_t&gt; &gt;&amp;    st )
	{	size_t n = st.size();
		size_t m = rt.size();
		assert( n == 1 );
		assert( m == 2 );

		// sparsity for S(x)^T = f'(x)^T * R^T
		my_union(st[0], rt[0], rt[1]);
		return true; 
	}
</pre></font></code>

<br/>
<br/>
<b><big><a name="rev_sparse_hes" id="rev_sparse_hes">rev_sparse_hes</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
	// reverse Hessian sparsity routine called by CppAD
	virtual bool rev_sparse_hes(
		const vector&lt;bool&gt;&amp;                   vx,
		const vector&lt;bool&gt;&amp;                   s ,
		      vector&lt;bool&gt;&amp;                   t ,
		size_t                                p ,
		const vector&lt;bool&gt;&amp;                   r ,
		const vector&lt;bool&gt;&amp;                   u ,
		      vector&lt;bool&gt;&amp;                   v )
	{
		size_t m = s.size();
		size_t n = t.size();
		assert( r.size() == n * p );
		assert( u.size() == m * p );
		assert( v.size() == n * p );
		assert( n == 1 );
		assert( m == 2 );

		// There are no cross term second derivatives for this case,
		// so it is not necessary to vx.

		// sparsity for T(x) = S(x) * f'(x) 
		t[0] =  s[0] | s[1];

		// V(x) = f'(x)^T * g''(y) * f'(x) * R  +  g'(y) * f''(x) * R 
		// U(x) = g''(y) * f'(x) * R
		// S(x) = g'(y)
		
		// back propagate the sparsity for U, note both components 
		// of f'(x) may be non-zero;
		size_t j;
		for(j = 0; j &lt; p; j++)
			v[j] = u[ 0 * p + j ] | u[ 1 * p + j ];

		// include forward Jacobian sparsity in Hessian sparsity
		// (note sparsty for f''(x) * R same as for R)
		if( s[0] | s[1] )
		{	for(j = 0; j &lt; p; j++)
				v[j] |= r[j];
		}

		return true;
	}
	// reverse Hessian sparsity routine called by CppAD
	virtual bool rev_sparse_hes(
		const vector&lt;bool&gt;&amp;                   vx,
		const vector&lt;bool&gt;&amp;                   s ,
		      vector&lt;bool&gt;&amp;                   t ,
		size_t                                p ,
		const vector&lt; std::set&lt;size_t&gt; &gt;&amp;     r ,
		const vector&lt; std::set&lt;size_t&gt; &gt;&amp;     u ,
		      vector&lt; std::set&lt;size_t&gt; &gt;&amp;     v )
	{	size_t m = s.size();
		size_t n = t.size();
		assert( r.size() == n );
		assert( u.size() == m );
		assert( v.size() == n );
		assert( n == 1 );
		assert( m == 2 );

		// There are no cross term second derivatives for this case,
		// so it is not necessary to vx.

		// sparsity for T(x) = S(x) * f'(x) 
		t[0] =  s[0] | s[1];

		// V(x) = f'(x)^T * g''(y) * f'(x) * R  +  g'(y) * f''(x) * R 
		// U(x) = g''(y) * f'(x) * R
		// S(x) = g'(y)
		
		// back propagate the sparsity for U, note both components 
		// of f'(x) may be non-zero;
		my_union(v[0], u[0], u[1]);

		// include forward Jacobian sparsity in Hessian sparsity
		// (note sparsty for f''(x) * R same as for R)
		if( s[0] | s[1] )
			my_union(v[0], v[0], r[0]);

		return true;
	}
</pre></font></code>

<br/>
<br/>
<b><big><a name="End Class Definition" id="End Class Definition">End Class Definition</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
}; // End of atomic_tangent class
}  // End empty namespace

</pre></font></code>

<br/>
<br/>
<b><big><a name="Use Atomic Function" id="Use Atomic Function">Use Atomic Function</a></big></b>

<code><font color='blue'><pre style='display:inline'> 
bool tangent(void)
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;
	float eps = 10.f * CppAD::numeric_limits&lt;float&gt;::epsilon();
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.Constructor" id="Use Atomic Function.Constructor">Constructor</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// --------------------------------------------------------------------
	// Creater a tan and tanh object
	atomic_tangent my_tan(&quot;my_tan&quot;, false), my_tanh(&quot;my_tanh&quot;, true);
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.Recording" id="Use Atomic Function.Recording">Recording</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// domain space vector
	size_t n  = 1;
	float  x0 = 0.5;
	CppAD::vector&lt; <a href="ad.xml" target="_top">AD</a>&lt;float&gt; &gt; ax(n);
	ax[0]     = x0;

	// declare independent variables and start tape recording
	CppAD::<a href="independent.xml" target="_top">Independent</a>(ax);

	// range space vector 
	size_t m = 3;
	CppAD::vector&lt; <a href="ad.xml" target="_top">AD</a>&lt;float&gt; &gt; af(m);

	// temporary vector for computations
	// (my_tan and my_tanh computes tan or tanh and its square)
	CppAD::vector&lt; <a href="ad.xml" target="_top">AD</a>&lt;float&gt; &gt; az(2);

	// call atomic tan function and store tan(x) in f[0] (ignore tan(x)^2)
	my_tan(ax, az);
	af[0] = az[0];

	// call atomic tanh function and store tanh(x) in f[1] (ignore tanh(x)^2)
	my_tanh(ax, az);
	af[1] = az[0];

	// put a constant in f[2] = tanh(1.) (for sparsity pattern testing)
	CppAD::vector&lt; <a href="ad.xml" target="_top">AD</a>&lt;float&gt; &gt; one(1);
	one[0] = 1.;
	my_tanh(one, az);
	af[2] = az[0]; 

	// create f: x -&gt; f and stop tape recording
	CppAD::<a href="funconstruct.xml" target="_top">ADFun</a>&lt;float&gt; F;
	F.Dependent(ax, af); 
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.forward" id="Use Atomic Function.forward">forward</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// check function value 
	float tan = std::tan(x0);
	ok &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(af[0] , tan,  eps, eps);
	float tanh = std::tanh(x0);
	ok &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(af[1] , tanh,  eps, eps);

	// check zero order forward
	CppAD::vector&lt;float&gt; x(n), f(m);
	x[0] = x0;
	f    = F.<a href="forward.xml" target="_top">Forward</a>(0, x);
	ok &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(f[0] , tan,  eps, eps);
	ok &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(f[1] , tanh,  eps, eps);

	// compute first partial of f w.r.t. x[0] using forward mode
	CppAD::vector&lt;float&gt; dx(n), df(m);
	dx[0] = 1.;
	df    = F.<a href="forward.xml" target="_top">Forward</a>(1, dx);
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.reverse" id="Use Atomic Function.reverse">reverse</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// compute derivative of tan - tanh using reverse mode
	CppAD::vector&lt;float&gt; w(m), dw(n);
	w[0]  = 1.;
	w[1]  = 1.;
	w[2]  = 0.;
	dw    = F.<a href="reverse.xml" target="_top">Reverse</a>(1, w);

	// tan'(x)   = 1 + tan(x)  * tan(x) 
	// tanh'(x)  = 1 - tanh(x) * tanh(x) 
	float tanp  = 1.f + tan * tan; 
	float tanhp = 1.f - tanh * tanh; 
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(df[0], tanp, eps, eps);
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(df[1], tanhp, eps, eps);
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(dw[0], w[0]*tanp + w[1]*tanhp, eps, eps);

	// compute second partial of f w.r.t. x[0] using forward mode
	CppAD::vector&lt;float&gt; ddx(n), ddf(m);
	ddx[0] = 0.;
	ddf    = F.<a href="forward.xml" target="_top">Forward</a>(2, ddx);

	// compute second derivative of tan - tanh using reverse mode
	CppAD::vector&lt;float&gt; ddw(2);
	ddw   = F.<a href="reverse.xml" target="_top">Reverse</a>(2, w);

	// tan''(x)   = 2 *  tan(x) * tan'(x) 
	// tanh''(x)  = - 2 * tanh(x) * tanh'(x) 
	// Note that second order Taylor coefficient for u half the
	// corresponding second derivative.
	float two    = 2;
	float tanpp  =   two * tan * tanp;
	float tanhpp = - two * tanh * tanhp;
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(two * ddf[0], tanpp, eps, eps);
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(two * ddf[1], tanhpp, eps, eps);
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(ddw[0], w[0]*tanp  + w[1]*tanhp , eps, eps);
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(ddw[1], w[0]*tanpp + w[1]*tanhpp, eps, eps);
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.for_sparse_jac" id="Use Atomic Function.for_sparse_jac">for_sparse_jac</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// Forward mode computation of sparsity pattern for F.
	size_t p = n;
	// user vectorBool because m and n are small
	CppAD::vectorBool r1(p), s1(m * p);
	r1[0] = true;            // propagate sparsity for x[0]
	s1    = F.ForSparseJac(p, r1);
	ok  &amp;= (s1[0] == true);  // f[0] depends on x[0]
	ok  &amp;= (s1[1] == true);  // f[1] depends on x[0]
	ok  &amp;= (s1[2] == false); // f[2] does not depend on x[0]
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.rev_sparse_jac" id="Use Atomic Function.rev_sparse_jac">rev_sparse_jac</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// Reverse mode computation of sparsity pattern for F.
	size_t q = m;
	CppAD::vectorBool s2(q * m), r2(q * n);
	// Sparsity pattern for identity matrix
	size_t i, j;
	for(i = 0; i &lt; q; i++)
	{	for(j = 0; j &lt; m; j++)
			s2[i * q + j] = (i == j);
	}
	r2   = F.RevSparseJac(q, s2);
	ok  &amp;= (r2[0] == true);  // f[0] depends on x[0]
	ok  &amp;= (r2[1] == true);  // f[1] depends on x[0]
	ok  &amp;= (r2[2] == false); // f[2] does not depend on x[0]
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.rev_sparse_hes" id="Use Atomic Function.rev_sparse_hes">rev_sparse_hes</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// Hessian sparsity for f[0]
	CppAD::vectorBool s3(m), h(p * n);
	s3[0] = true;
	s3[1] = false;
	s3[2] = false;
	h    = F.RevSparseHes(p, s3);
	ok  &amp;= (h[0] == true);  // Hessian is non-zero

	// Hessian sparsity for f[2]
	s3[0] = false;
	s3[2] = true;
	h    = F.RevSparseHes(p, s3);
	ok  &amp;= (h[0] == false);  // Hessian is zero
</pre></font></code>

<br/>
<br/>
<b><a name="Use Atomic Function.Large x Values" id="Use Atomic Function.Large x Values">Large x Values</a></b>

<code><font color='blue'><pre style='display:inline'> 
	// check tanh results for a large value of x
	x[0]  = std::numeric_limits&lt;float&gt;::max() / two;
	f     = F.<a href="forward.xml" target="_top">Forward</a>(0, x);
	tanh  = 1.;
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(f[1], tanh, eps, eps);
	df    = F.<a href="forward.xml" target="_top">Forward</a>(1, dx);
	tanhp = 0.;
	ok   &amp;= <a href="nearequal.xml" target="_top">NearEqual</a>(df[1], tanhp, eps, eps);
 
	return ok;
}
</pre></font></code>

 

<hr/>Input File: example/atomic/tangent.cpp

</body>
</html>